	Jakarta International	Name:	
	School		
	8 th Grade – AG1	Date:	
	Practice Test -Green	Score:	
	Exponents, Radicals, and the Pythagorean Theorem	50	

Goal 7: Apply Exponents, Radicals, and the Pythagorean Theorem

2 Points Per Problem Unless Stated Otherwise

1. Solve for x

$A. 3^x = 9^2 \cdot 3 \cdot 27^3$	B. $16 = 2^{3x-2}$
C. $p^5\left(\frac{1}{p^2}\right) = p^x$	
	(nainta

6 points.

2. One circular ice skating stadium for children has a radius of x^2 and the other for adults has a radius which is triple the first. Find the ratio of the area of the larger stadium to the area of the smaller stadium.

2 points

Sub total 8 points

3. Simplify or evaluate the following expressions. Write answers in simplest form.

A. 10 ⁻² .10 ⁰	$B.\left[\left(-2\right)^{3}\right]^{2}$
C. $(3x)^{-2}(-3x)$	D. $(5x)^0 y^{-2}$
	8 points

- 4. Make a table of values for the exponential function $y = \left(\frac{1}{3}\right)^x$
 - Show how you evaluated at least one input output pair in your table.

Х			
$y = \left(\frac{1}{3}\right)^x$			

3 points

• Use your table to graph this function.

5. Simplify the following expressions. Use only positive exponents in your answer.

4 points

6. The human body has $1 \ge 10^{12}$ cells. There are $3 \ge 10^{10}$ red blood cells. Find the ratio of red blood cells to the total number of cells and write the number in scientific notation.

2 points

Sub total 6 points

7. Write the number in decimal form.

A. 0.759 x 10 ⁶	B. 52.4 x 10^{-4}

4 points

8. A population of 40 pheasants is released in a wild life preserve. The population doubles each year. What is the population after 4 years?

- Write an exponential growth model
- Evaluate the pheasant population after 4 years?
- Graph the population growth over four years.

3 points

9. Write an exponential growth model for the profit.

A business has a \$ 5000 profit in 1990. Then this profit increased by 15% per year for the next 10 years.

2 points

A.	Working	B. $\sqrt{0.0025x^4y^6z^5}$	Working
C. $(-2\sqrt{7})^2$		D. $\frac{12}{3\sqrt{15}}$	

10. Evaluate or simplify the following expressions without using a calculator

Sub total 8 points

13. Solve the equations. Write the solutions(s) as simplified as possible.

Α.	В.
$3a^2 = 147$	$6x^2 - 54 = 0$

4 points

- 14. A ladder is 5m long. Its foot is on a flat driveway 2m from the base of a vertical wall. How far up the wall will the top of the ladder reach?
 - Draw a sketch of the ladder leaning against the wall
 - Using the 4 step problem solving process find out how far up the wall the ladder will reach
 - Give your answer in its simplest form.

4 points

Sub total 8 points